Si les courbes de la ou des fonctions ne m'ont pas été données, c'est à moi de les obtenir, et ensuite de les utiliser pour répondre aux équations ou inéquations.

Si les courbes de la ou des fonctions ne m'ont pas été données, c'est à moi de les obtenir, et ensuite de les utiliser pour répondre aux équations ou inéquations.

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

 $par \quad f(x) = \frac{2x^3 - 5x - 100}{1 + x^2} \quad et \quad g(x) = 10x - 51$

Si les courbes de la ou des fonctions ne m'ont pas été données, c'est à moi de les obtenir, et ensuite de les utiliser pour répondre aux équations ou inéquations.

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

 $2x^{3} - 5x - 100$ par $f(x) = \frac{1 + x^{2}}{1 + x^{2}}$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions.

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

par $f(x) = \frac{2x^3 - 5x - 100}{1 + x^2}$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 − 5 X − 100) ÷ (1 + X²) EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

 $2x^3 - 5x - 100$

par $f(x) = \frac{1}{1 + x^2}$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) ÷ (1 + X²) EXE

S'il y a des expressions que je ne veux pas effacer avec DEL, je les désélectionne avec SEL.

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

 $2x^3 - 5x - 100$

par f(x) = ----- et g(x) = 10x - 51 $1 + x^2$

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 − 5 X − 100) ÷ (1 + X²) EXE

S'il y a des expressions que je ne veux pas effacer avec DEL, je les désélectionne avec SEL.

S'il n'y a pas des Y = mais des X = ou des r = je vais dans TYPE pour sélectionner Y =

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

 $2x^3 - 5x - 100$

par f(x) = ----- et g(x) = 10x - 51 $1 + x^2$

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 − 5 X − 100) ÷ (1 + X²) EXE

S'il y a des expressions que je ne veux pas effacer avec DEL, je les désélectionne avec SEL.

S'il n'y a pas des Y = mais des X = ou des r = je vais dans TYPE pour sélectionner Y =

Si je ne mets pas des parenthèses, la machine aura eu la fonction

 $2x^3 - 5x - (100/1) + x^2$ en utilisant les conventions mathématiques d'écriture.

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

 $2x^3 - 5x - 100$

par f(x) = ----- et g(x) = 10x - 51 $1 + x^2$

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 − 5 X − 100) ÷ (1 + X²) EXE

S'il y a des expressions que je ne veux pas effacer, je les désélectionne avec SEL. S'il n'y a pas des Y = mais des X = ou des r = je vais dans TYPE pour sélectionner Y = Si je ne mets pas des parenthèses, la machine aura eu la fonction $2x^3 - 5x - (100/1) + x^2$ en utilisant les conventions mathématiques d'écriture. Dans Y2 je tape 10 X - 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Exemple : je dois résoudre graphiquement l'inéquation f(x) < g(x), avec les fonctions définies sur [- 3 ; 9] avec $f(x) = (2x^3 - 5x - 100) / (1 + x^2)$ et g(x) = 10x - 51

Etape 1 : je vais dans le Menu « Graphes » de la machine et je rentre les expressions des deux fonctions. Menu \rightarrow GRAPH

Dans Y1 je tape (2 × X ^ 3 – 5 X – 100) - (1 + X²) EXE

Dans Y2 je tape 10 X – 51 EXE

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 \text{ EXE } X_{maxi} = 9 \text{ EXE}$ Scale 1

mais je ne sais pas où la courbe va se trouver en hauteur :

je peux tenter Y_{mini} = - 500 EXE Y_{maxi} = 500 EXE Scale 1 EXIT

qui me donne à l'écran avec DRAW

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 \text{ EXE } X_{maxi} = 9 \text{ EXE}$ Scale 1

mais je ne sais pas où la courbe va se trouver en hauteur :

je peux tenter Y_{mini} = - 500 EXE Y_{maxi} = 500 EXE Scale 1 EXIT qui me donne à l'écran avec DRAW

je ne distingue rien ! car il y a plein de y inutiles. La plage en hauteur [- 500 ; 500] est trop grande. Il faut donc diminuer la plage en hauteur.

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 \text{ EXE } X_{maxi} = 9 \text{ EXE}$ Scale 1

je peux tenter Y_{mini} = - 10 EXE Y_{maxi} = 10 EXE Scale 1 EXIT qui me donne à l'écran avec DRAW

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 \text{ EXE } X_{maxi} = 9 \text{ EXE}$ Scale 1

je peux tenter $Y_{mini} = -10 EXE Y_{maxi} = 10 EXE Scale 1 EXIT$ qui me donne à l'écran avec DRAW

j'ai perdu plein d'informations au-dessus et en-dessous : la plage en hauteur [- 10 ; 10] est trop petite.

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51 **Etape 2 :** j'impose la fenêtre en largeur : Shift Windows X_{mini} = - 3 EXE X_{maxi} = 9 EXE Scale 1

En tâtonnant, je peux trouver une plage $Y_{mini} = -150$; $Y_{maxi} = 50$ qui me donne un écran où j'ai toutes les courbes, et utilisables :

Etape 1 : je rentre les expressions $Y1 = (2x^3 - 5x - 100) / (1 + x^2)$ EXE puis Y2 = g(x) = 10x - 51 EXE

Etape 2 : j'impose la fenêtre en largeur :

Shift Windows $X_{mini} = -3$ EXE $X_{maxi} = 9$ EXE Scale 1 EXIT En faisant Draw \rightarrow Shift Zoom \rightarrow Auto

j'obtiens l'écran où j'ai toutes les courbes utilisant tout l'écran :

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 EXE X_{maxi} = 9 EXE$ Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 EXE X_{maxi} = 9 EXE$ Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

On peut le mettre en mémoire lorsqu'on en aura besoin de nouveau plus tard :

Shift Windows \rightarrow on fixe ou on lit les X et Y \rightarrow STO \rightarrow en V.W1 (RCL pour le rappeler)

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows X_{mini} = - 3 EXE X_{maxi} = 9 EXE Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

Etape 3 : je cherche les solutions de l'équation ou de l'inéquation, qui toutes nécessitent les abscisses des points d'intersection :

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows X_{mini} = - 3 EXE X_{maxi} = 9 EXE Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

Etape 3 : je cherche les solutions de l'équation ou de l'inéquation, qui toutes nécessitent les abscisses des points d'intersections : je les obtient avec Shift Trace, et je déplace le pointeur sur les points d'intersections et je lis leurs abscisses :

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 EXE X_{maxi} = 9 EXE$ Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

Etape 3 : j'obtiens les abscisses des points d'intersections avec Shift Trace, en déplaçant le pointeur. Je fais des zooms éventuels avec Shift Zoom \rightarrow Box pour la précision.

Etape 4 : je recopie l'écran sur ma copie avec les justifications

et la réponse

Résumé :

f(x) < g(x), avec les fonctions définies sur [- 3 ; 9]

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 \text{ EXE } X_{maxi} = 9 \text{ EXE}$ Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

Etape 3 : j'obtiens les abscisses des points d'intersections avec Shift Trace, en déplaçant le pointeur. Je fais des zooms éventuels avec Shift Zoom \rightarrow Box pour la précision.

Etape 4 : je recopie l'écran sur ma copie avec les justifications

et je donne la réponse :

S ≈] **- 0,8 ; 1,3 [U] 5,9 ; 9**]

Minimum sur ma copie :

résoudre f(x) < g(x) dans [- 3 ; 9]

Etapes (à ne pas écrire sur sa copie) :

Menu Graph puis Y = pour les expressions de f(x) et de g(x) Windows pour les x de [-3;9] et Zoom Auto pour les y **Trace** pour lire le x des points d'intersections.

Sur ma copie : écran :

(mais pas inter)

et

ou

Etape 1 : je rentre les expressions Y1 = $(2x^3 - 5x - 100) / (1 + x^2)$ et Y2 = g(x) = 10x - 51

Etape 2 : j'impose la fenêtre en largeur : Shift Windows $X_{mini} = -3 EXE X_{maxi} = 9 EXE$ Scale 1

Puis Draw \rightarrow Shift Zoom \rightarrow Auto me donne en hauteur le meilleur écran utilisable.

Etape 3 : je cherche les solutions de l'équation ou de l'inéquation, qui toutes nécessitent les abscisses des points d'intersections : je les obtient avec Shift Trace, et je déplace le pointeur sur les points d'intersections et je lis leurs abscisses :

Si l'imprécision est trop grande par rapport à la précision demandée je fais un zoom : Shift Zoom → Box

j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de – 0,9 à – 0,8 à – 0,7

Le 1^{er} chiffre semble être 8

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de – 0,9 à – 0,8 à – 0,7 (car s'il y a 100 pixels en largeur, pour une plage

de -3 à 9 donc de largeur 9 – (-3) = 12, un pixel représente ...

Le 1^{er} chiffre semble être 8

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de – 0,9 à – 0,8 à – 0,7 (car s'il y a 100 pixels en largeur, pour une plage

de -3 à 9 donc de largeur 9 – (-3) = 12, un pixel représente 12/100 = 0,12 donc

les nombres successifs sont écartés de 0,12, donc je passe de 0,7 à 0,82, puis à 0,94 etc...)

Le 1^{er} chiffre semble être 8

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de - 0,9 à - 0,8 à - 0,7 je passe de - 0,81 à - 0,79

Le 1^{er} chiffre semble être 8

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de - 0,9 à - 0,8 à - 0,7 je passe de - 0,81 à - 0,79

Le 1^{er} chiffre semble être 8

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de - 0,9 à - 0,8 à - 0,7 je passe de - 0,81 à - 0,79

Le 1^{er} chiffre semble être 8

Shift Zoom → Box puis j'amène le pointeur sur un sommet, EXE, puis je l'amène sur le sommet en diagonale, EXE

A chaque fois que je me déplace d'1 pixel :

je passe de - 0,9 à - 0,8 à - 0,7 je passe de - 0,81 à - 0,79

Le 1^{er} chiffre semble être 8

