1°) <u>Définition</u>:

Un entier x est pair

1°) <u>Définition</u>:

Un entier x est pair

 \Rightarrow il existe un entier n tel que x = 2n

1°) <u>Définition</u>:

Un entier x est pair

 \Rightarrow il existe un entier n tel que x = 2n

Un entier x est impair

1°) <u>Définition</u>:

Un entier x est pair

 \Rightarrow il existe un entier n tel que x = 2n

Un entier x est impair

 \Rightarrow il existe un entier n tel que x = 2n + 1

Exercice 9:

A est un nombre pair, et B est un nombre impair.

Déterminez la parité des nombres suivants :

$$1^{\circ}$$
) $C = 3A + 2B$

$$2^{\circ}$$
) $D = A^2$

$$3^{\circ}) E = B^{2}$$

$$4^{\circ}$$
) $F = (A + 1)(B + 1)$

1°)
$$C = 3A + 2B$$

A pair \Leftrightarrow A = 2n avec n entier

B impair \iff B = 2t + 1 avec t entier

1°)
$$C = 3A + 2B$$

A pair \iff $A = 2n$ avec n entier
B impair \iff $B = 2t + 1$ avec t entier
 $C = 3(2n) + 2(2t + 1)$
 $= 6n + 4t + 2 = ...$

1°)
$$C = 3A + 2B$$

A pair \iff $A = 2n$ avec n entier
B impair \iff $B = 2t + 1$ avec t entier
 $C = 3(2n) + 2(2t + 1)$
 $= 6n + 4t + 2 = 2(3n + 2t + 1)$

1°)
$$C = 3A + 2B$$

A pair \iff $A = 2n$ avec n entier
B impair \iff $B = 2t + 1$ avec t entier
 $C = 3(2n) + 2(2t + 1)$
 $= 6n + 4t + 2 = 2(3n + 2t + 1)$
n et t entiers \iff $(3n + 2t + 1)$ est un entier k
 $C = 2k$ avec k entier \iff C est pair

Remarque: l'équivalence est-elle juste? n et t entiers (3n + 2t + 1) est un entier

Remarque: l'équivalence est-elle juste?

n et t entiers $\langle 2 \rangle$ (3n + 2t + 1) est un entier Implication :

n et t entiers (3n + 2t + 1) est un entier toujours vraie!

Réciproque (ou contraposée):

n et t entiers (3n + 2t + 1) est un entier vraie ?

Remarque: l'équivalence est-elle juste?

n et t entiers (3n + 2t + 1) est un entier

Implication: toujours vraie!

n et t entiers \implies (3n + 2t + 1) est un entier

Réciproque:

n et t entiers (3n + 2t + 1) est un entier Parfois vraie 3(2)+2(5)+1 entier 2 et 5 entiers

Parfois fausse $3(\frac{1}{3})+2(0,5)+1$ entier

mais 1/3 et 0,5 ne sont pas des entiers

A corriger:

1°)
$$C = 3A + 2B$$

A pair \Leftrightarrow $A = 2n$ avec n entier

B impair
$$\iff$$
 B = 2t + 1 avec t entier

$$C = 3(2n) + 2(2t + 1) = ... = 2(3n + 2t + 1)$$

réciproque parfois fausse

n et t entiers
$$\iff$$
 (3n + 2t + 1) est un entier k
C = 2k avec k entier \iff C est pair

Version sans erreurs d'équivalences : (non pénalisées en 2^{nde}) 1°) C = 3A + 2BA pair $\langle \rightarrow \rangle$ A = 2n avec n entier B impair $\langle --- \rangle$ B = 2t + 1 avec t entier C = 3(2n) + 2(2t + 1)= 6n + 4t + 2 = 2 (3n + 2t + 1)n et t entiers \Longrightarrow (3n + 2t + 1) est un entier k C = 2k avec k entier $\langle --- \rangle$ C est pair

$$2^{\circ}) D = A^2$$

A pair
$$\iff$$
 A = 2n avec n entier

$$D = (2n)^2 = 4 n^2 = 2 (2n^2)$$

n entier \implies (2n²) est un entier k D = 2k avec k entier \iff D est pair

2°)
$$D = A^2$$

A pair \Leftrightarrow $A = 2n$ avec n entier $D = (2n)^2 = 4n^2 = 2(2n^2)$

n entier \Longrightarrow (2n²) est un entier k

$$D = 2k$$
 avec k entier \Longrightarrow D est pair

3°)
$$E = B^2$$

B impair \iff $B = 2n + 1$ avec n entier
 $E = (2n + 1)^2$ identité remarquable n° 1
 $(a + b)^2 = a^2 + 2ab + b^2$
 $E = (2n)^2 + 2 \times 2n \times 1 + 1^2 = 4n^2 + 4n + 1$
 $= 2(2n^2 + 2n) + 1 = 4(n^2 + n) + 1$

A pair et B impair. 3°) $E = B^{2}$

B impair
$$\iff$$
 B = 2n + 1 avec n entier
E = $(2n + 1)^2$ $(a + b)^2 = a^2 + 2ab + b^2$
E = $(2n)^2 + 2 \times 2n \times 1 + 1^2 = 4n^2 + 4n + 1$
= $2(2n^2 + 2n) + 1$
n entier \implies $(2n^2 + 2n)$ est un entier k
E = $2k + 1$ avec k entier \iff E est impair

A pair et B impair. 4°) F = (A + 1)(B + 1)

A pair
$$\iff$$
 A = 2n avec n entier
B impair \iff B = 2t + 1 avec t entier
F = (A + 1)(B + 1)
= (2n + 1)(2t + 1 + 1) = ...

A pair et B impair. 4°) F = (A + 1)(B + 1)A pair \iff A = 2n avec n entier B impair \iff B = 2t + 1 avec t entier F = (A + 1)(B + 1)= (2n + 1)(2t + 1 + 1) = (2n + 1)(2t + 2)= 2 (2n + 1) (t + 1)

A pair et B impair. 4°) F = (A + 1)(B + 1)A pair $\langle \rightarrow \rangle$ A = 2n avec n entier B impair \iff B = 2t + 1 avec t entier F = (A + 1)(B + 1)= (2n + 1)(2t + 1 + 1) = (2n + 1)(2t + 2)= 2 (2n + 1) (t + 1)n et t entiers \Longrightarrow (2n+1)(t+1) est un entier k F = 2k avec k entier \iff F est pair

Autre possibilité : développer F

```
A pair \langle \rightarrow \rangle A = 2n avec n entier
B impair \iff B = 2t + 1 avec t entier
F = (A + 1)(B + 1) = (2n + 1)(2t + 1 + 1)
 = 2n(2t+2)+1(2t+2)
 = 4nt + 4n + 2t + 2 = 2 (2nt + 2n + t + 1)
n et t entiers (2nt + 2n + t + 1) est un entier k
F = 2k avec k entier \langle --- \rangle F est pair
```