3) Moyenne d'une série discrète :

On note μ ou \overline{x} ou x_{moyen} la moyenne

$$n_1 x_1 + n_2 x_2 + ... + n_t x_t$$
 $\mu = \frac{1}{N}$

3) Moyenne d'une série discrète :

On note μ ou \overline{x} ou x_{moven} la moyenne

$$\mu = \frac{n_1 x_1 + n_2 x_2 + ... + n_t x_t}{N}$$

$$\mu = \frac{\sum n_i x_i}{\sum n_i}$$

$$\mu = \frac{\sum n_i x_i}{\sum n_i}$$

∑ désigne la somme pour tous les i de 1 à t

Démonstration:

C'est un nombre qui représente toutes les valeurs x_1 , x_2 , x_3 , etc... avec leurs effectifs respectifs n_1 , n_2 , n_3 , etc...

Ce nombre est la valeur numérique que prendraient toutes les valeurs x_1 , x_2 , x_3 , etc... si elles étaient égales et obtenaient la même somme.

$$x_1 + x_2 + x_3 + ... + x_p$$
 est noté $\sum_{i=1}^{p} x_i$

Soit S la somme de toutes les valeurs. $S = n_1 x_1 + n_2 x_2 + ... + n_t x_t = \sum_i n_i x_i$

La moyenne μ est le nombre que prendraient toutes les valeurs si elles étaient égales, donc la série x_1 , x_2 , x_3 , etc... deviendrait μ , μ , μ , etc... avec toujours les mêmes effectifs n_1 , n_2 , n_3 , etc...

La somme
$$S = \sum_i n_i x_i = n_1 x_1 + n_2 x_2 + ... + n_t x_t$$

deviendrait $S' = \sum_i n_i x_i = n_1 \mu + n_2 \mu + ... + n_t \mu = (n_1 + n_2 + ... + n_t) \mu = N \mu$

Démonstration:

La moyenne μ est le nombre que prendraient toutes les valeurs si elles étaient égales, et si elles donnaient la même somme.

$$S' = S$$

$$\iff N \mu = n_1 x_1 + n_2 x_2 + ... + n_t x_t$$

$$n_1 x_1 + n_2 x_2 + ... + n_t x_t$$

$$\iff \mu =$$

$$N$$

La moyenne représente la série, car elle la résume en 1 seul nombre, qui serait le même nombre pour toutes les valeurs de la série, en ayant la même somme.

Exemple : déterminez la **moyenne** pour la série de l'exercice précédent.

Xi	0	1	2
n _i	4	25	5

Exemple : déterminez la moyenne pour la série de l'exercice précédent.

En moyenne, les 34 élèves de la classe ont $35/34 \approx 1,03$ calculatrice.

Exemple : déterminez la moyenne pour la série de l'exercice précédent.

$$\sum_{i} n_{i} x_{i} = 4 \times 0 + 25 \times 1 + 5 \times 2 = 35$$

$$\mu = \frac{\sum_{i} n_{i} x_{i}}{\sum_{i} n_{i}} = \frac{4 \times 0 + 25 \times 1 + 5 \times 2}{\sum_{i} n_{i}} = \frac{35}{34}$$

$$\sum_{i} n_{i} = \frac{4 \times 0 + 25 \times 1 + 5 \times 2}{\sum_{i} n_{i}} = \frac{34}{34}$$

En moyenne, les 34 élèves de la classe ont $35/34 \approx 1,03$ calculatrice.

Remarque : la valeur exacte est 35/34, mais 1,03 est une valeur approchée, car 35/34 n'est pas un nombre décimal, donc son écriture décimale comporte une infinité de chiffres.

Lorsqu'on ajoute un même nombre k à toutes les valeurs x_i d'une série statistique, alors la moyenne...

Lorsqu'on ajoute un même nombre k à toutes les valeurs x_i d'une série statistique, alors la moyenne est augmentée de k.

si
$$x_i' = x_i + k$$
 pour tous les i alors $\mu' = \mu + k$

Lorsqu'on ajoute un même nombre k à toutes les valeurs x_i d'une série statistique, alors la moyenne est augmentée de k.

si
$$x_i' = x_i + k$$
 pour tous les i alors $\mu' = \mu + k$

Lorsqu'on multiplie un même nombre k à toutes les valeurs x_i d'une série statistique, alors la moyenne ...

Lorsqu'on ajoute un même nombre k à toutes les valeurs x_i d'une série statistique, alors la moyenne est augmentée de k.

si
$$x_i' = x_i + k$$
 pour tous les i alors $\mu' = \mu + k$

Démonstration:

$$\mu' = \frac{n_1 x_1' + ... + n_t x_t'}{N} = \frac{n_1 (x_1 + k) + ... + n_t (x_t + k)}{N}$$

$$= \frac{n_1 x_1' + ... + n_t x_t}{N} + \frac{k (n_1 + ... + n_t)}{N}$$

$$= \frac{\mu + k}{N}$$

Lorsqu'on multiplie toutes les valeurs x_i d'une série statistique par un même nombre k, alors la moyenne est ...

Lorsqu'on ajoute un même nombre k à toutes les valeurs x_i d'une série statistique, alors la moyenne est augmentée de k.

si
$$x_i' = x_i + k$$
 pour tous les i alors $\mu' = \mu + k$

Lorsqu'on multiplie toutes les valeurs x_i d'une série statistique par un même nombre k, alors la moyenne est multipliée par k.

si
$$x_i' = x_i \times k$$
 pour tous les i alors $\mu' = \mu \times k$

Lorsqu'on multiplie toutes les valeurs x_i d'une série statistique par un même nombre k, alors la moyenne est multipliée par k.

si
$$x_i' = x_i \times k$$
 pour tous les i alors $\mu' = \mu \times k$

Démonstration:

$$\mu' = \frac{n_1 x_1' + ... + n_t x_t'}{N} = \frac{n_1 (x_1 \times k) + ... + n_t (x_t \times k)}{N}$$

$$= \frac{(n_1 x_1 + ... + n_t x_t) k}{N}$$

$$= \frac{\mu \times k}{N}$$

Moyenne d'une série

à partir des moyennes de sous-séries :

Soit une série d'effectif N, coupée en deux sous-séries de moyennes respectives μ_1 et μ_2 et d'effectifs N_1 et N_2 .

$$\mu = \frac{N_1 \mu_1 + N_2 \mu_2}{N_1 + N_2}$$

Moyenne d'une série à partir des moyennes de sous-séries :

Soit une série d'effectif N, coupée en deux sous-séries de moyennes respectives μ_1 et μ_2 et d'effectifs N_1 et N_2 .

$$\mu = \frac{N_1 \mu_1 + N_2 \mu_2}{N_1 + N_2}$$

Démonstration:

$$\mu = \frac{\left(n_{1} x_{1} + ... + n_{t} x_{t}\right) + \left(n_{t+1} x_{t+1} + ... + n_{p} x_{p}\right)}{N_{1} \mu_{1} + N_{2} \mu_{2}} = \frac{N_{1} \mu_{1} + N_{2} \mu_{2}}{N_{1} + N_{2}}$$

$$= \frac{N_{1} \mu_{1} + N_{2} \mu_{2}}{N_{1} + N_{2}}$$

$$= \frac{n_{1} x_{1} + ... + n_{t} x_{t}}{n_{t+1} x_{t+1} + ... + n_{p} x_{p}}$$

$$= \frac{n_{1} x_{1} + ... + n_{t} x_{t}}{N_{2}}$$

$$= \frac{n_{t+1} x_{t+1} + ... + n_{p} x_{p}}{N_{2}}$$

4) Médiane :

C'est le nombre qui sépare la série statistique en deux sous-séries de même effectif.

Si la série est d'effectif impair N, la médiane M_e est forcément une valeur de la série :

$$N = m + 1 + m$$
 donc $M_e = x_{m+1}$

Exemple:
$$N = 17 = 8 + 1 + 8$$
 donc $M_e = x_9$

4) Médiane:

Si la série est d'effectif impair, N = m + 1 + m donc $M_e = x_{m+1}$ Si la série est d'effectif pair N, la médiane M_e n'est **pas** une valeur x_i de la série : N = m + m on adopte $M_e = \frac{1}{2}(x_m + x_{m+1})$

Exemples : 1) série constituée des nombres 5 ; 11 ; 11 ; 14. $M_a = ...$?

2) série constituée des nombres 2 ; 7 ; 8 ; 9 ; 10 ; 12 ; 14. $M_e = ...$?

3) série constituée des nombres 1 ; 5 ; 9 ; 13 ; 14 ; 19. M_e = ... ? 4) Médiane:

Si la série est d'effectif impair, N = m + 1 + m donc $M_e = x_{m+1}$ Si la série est d'effectif pair N, la médiane M_e n'est pas une valeur x_i de la série : N = m + m on adopte $M_e = \frac{1}{2}(x_m + x_{m+1})$

Exemples: 1) série constituée des nombres 5 ; 11, 11 ; 14.

$$N = 4 = 2 \pm 2 \text{ donc } M_e = \frac{1}{2}(x_2 + x_3) = \frac{1}{2}(11 + 11) = \frac{1}{2}22 = \frac{11}{2}$$

N = 4 = 2 + 2 donc $M_e = \frac{1}{2}(x_2 + x_3) = \frac{1}{2}(11 + 11) = \frac{1}{2}22 = 11$ 2) série constituée des nombres 2 ; 7 ; 8 ; 9; 10 ; 12 ; 14.

N = 7 = 3 + 1 + 3 donc $M_e = x_4 = 9$ 3) série constituée des nombres 1 ; 5 ; 9, 13 ; 14 ; 19.

$$N = 7 = 3 + 1 + 3 \text{ donc } M_e = x_4 = 9$$

$$N = 6 = 3 + 3 \text{ donc } M_e = \frac{1}{2}(x_3 + x_4) = \frac{1}{2}(9 + 13) = \frac{1}{2} = 11$$

C'est la plus petite valeur x_q de la série telle qu'au moins 25% des valeurs soient inférieures ou égales à Q₁.

$$x_1 < x_2 < x_3 < x_4 < x_5 < x_6 < etc...$$
 25% des valeurs donc 25% de l'effectif de la série donc $q \ge \frac{1}{4} N$

Mais ¼ N n'est pas forcément un entier!

S'il n'est pas entier, on prendra le 1^{er} entier q supérieur à ¼ N car on veut au moins 25% de l'effectif de la série.

C'est la plus petite valeur x_q de la série telle qu'au moins 25% des valeurs soient inférieures ou égales à Q₁.

Exemple:

Série 2 4 5 7 8 9 12 15 22

Quel est son 1^{er} quartile ?

C'est la plus petite valeur x_q de la série telle qu'au moins 25% des valeurs soient inférieures ou égales à Q₁.

Exemple:

Série 2 4 5 7 8 9 12 15 22 2,25ème terme

Quel est son 1^{er} quartile ?

Effectif
$$N = 9$$
 $\frac{1}{4} 9 = 2,25$ \longrightarrow $Q_1 = ...$

C'est la plus petite valeur x_q de la série telle qu'au moins 25% des valeurs soient inférieures ou égales à Q₁.

Exemple:

Série 2 4 5 7 8 9 12 15 22 au moins 25% de l'effectif

Quel est son 1^{er} quartile ?

Effectif
$$N = 9$$
 $\frac{1}{4} 9 = 2,25$ \longrightarrow $Q_1 = x_3 = 5$

6) **Troisième** quartile Q₃:

C'est la plus petite valeur x_q de la série telle qu'au moins 75% des valeurs soient inférieures ou égales à Q_3 .

$$x_1 < x_2 < x_3 < x_4 < x_5 < x_6 <$$
 etc...
75% des valeurs donc 75% de l'effectif de la série donc $q \ge \frac{34}{N}$

Mais ¾ N n'est pas forcément un entier!
S'il n'est pas entier, on prendra le 1^{er} entier q supérieur à ¾ N car on veut au moins 75% de l'effectif de la série.

6) Troisième quartile Q₃:

C'est la plus petite valeur x_q de la série telle qu'au moins 75% des valeurs soient inférieures ou égales à Q_3 .

Exemple:

Effectif
$$N = 9$$
 $\frac{1}{4} 9 = 2,25$ \longrightarrow $Q_1 = x_3 = 5$

$$Q_3 = ...$$
?

6) Troisième quartile Q₃:

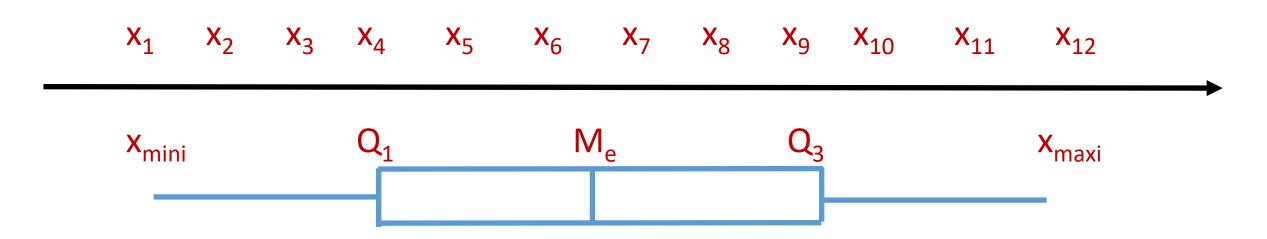
C'est la plus petite valeur x_q de la série telle qu'au moins 75% des valeurs soient inférieures ou égales à Q_3 .

Exemple:

Effectif
$$N = 9$$
 $\frac{1}{4} 9 = 2,25$ \longrightarrow $Q_1 = x_3 = 5$

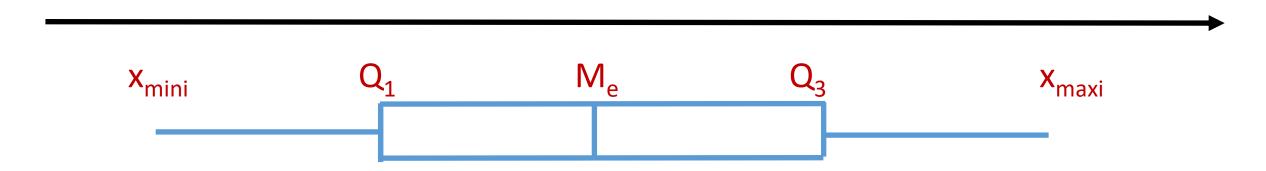
Série 2 4 5 7 8 9 12 15 22 au moins 75% de l'effectif
Effectif
$$N = 9$$
 34 9 = 6,75 \longrightarrow $Q_3 = x_7 = 12$

La valeur minimale x_1 , le 1^{er} quartile Q_1 , la médiane M_e , le 3^{eme} quartile Q_3 , et la valeur maximale x_p , permettent de résumer la série de N valeurs x_1 , x_2 , x_3 , etc... par seulement 5 valeurs.



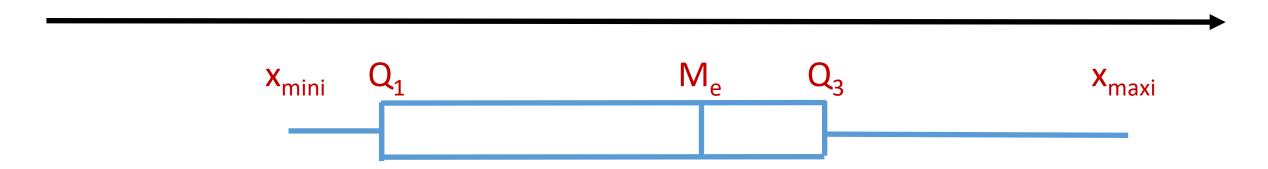
entre lesquelles il y a à peu près 25% des valeurs x_i de la série.

La valeur minimale x_1 , le 1^{er} quartile Q_1 , la médiane M_e , le 3^{eme} quartile Q_3 , et la valeur maximale x_p , permettent de résumer la série de N valeurs x_1 , x_2 , x_3 , etc... par seulement 5 valeurs.



entre lesquelles il y a à peu près 25% des valeurs x_i de la série.

La valeur minimale x_1 , le 1^{er} quartile Q_1 , la médiane M_e , le 3^{eme} quartile Q_3 , et la valeur maximale x_p , permettent de résumer la série de N valeurs x_1 , x_2 , x_3 , etc... par seulement 5 valeurs.



entre lesquelles il y a à peu près 25% des valeurs x_i de la série.

C'est l'écart entre les quartiles Q₁ et Q₃.

Donc
$$Q_3 - Q_1$$

Entre Q₁ et Q₃ on a ... de la série.

C'est l'écart entre les quartiles Q₁ et Q₃.

Donc
$$Q_3 - Q_1$$

Entre Q_1 et Q_3 on a $\approx 75 - 25 = 50\%$ de la série.

Donc $Q_3 - Q_1$ permet de connaître ...

C'est l'écart entre les quartiles Q₁ et Q₃.

Donc
$$Q_3 - Q_1$$

Entre Q_1 et Q_3 on a $\approx 75 - 25 = 50\%$ de la série.

Donc $Q_3 - Q_1$ permet de connaître si les 50% de l'effectif central est réparti avec des valeurs numériques proches ou éloignées.

C'est l'écart entre les quartiles Q₁ et Q₃.

Donc
$$Q_3 - Q_1$$

Le 1^{er} quartile représente à peu près 25% de l'effectif, et le 3^{ème} quartile représente à peu près 75% de l'effectif, donc entre les deux il y a à peu près la moitié de l'effectif.

L'écart interquartiles permet donc de savoir si la moitié de l'effectif autour de la valeur médiane est répartie sur une grande plage ou pas

(si les 50% centraux de l'effectif sont étendus ou non).

8) Etendue:

C'est l'écart entre toutes les valeurs

$$x_1 < x_2 < x_3 < x_4 < x_5 < x_6 < ... < x_{p-1} < x_p$$
Donc $x_{maxi} - x_{mini}$

L'étendue permet de savoir si l'effectif est réparti sur une grande plage ou une petite plage.

L'étendue permet de savoir si la série est étendue ou resserrée.

9) Mode d'une série discrète:

C'est la valeur ayant le plus grand effectif. (pour les séries discrètes)

Si la série est continue (série constituée d'intervalles) :

La classe modale est l'intervalle ayant le plus grand effectif.

1) Diagrammes à bâtons ou à barres : uniquement pour les séries discrètes.

On obtient la même forme de graphique, que l'on étudie les effectifs ou les fréquences des valeurs de la série.

1) Diagrammes à bâtons ou à barres : uniquement pour les séries discrètes.

On obtient la même forme de graphique, que l'on étudie les effectifs ou les fréquences des valeurs de la série.

Exemple à partir du même exercice sur le nb de calculatrices :

X _i	0	1	2
n _i	4	25	5

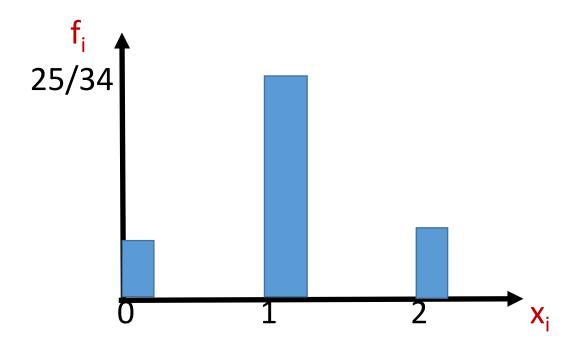
1) Diagrammes à bâtons ou à barres : uniquement pour les séries discrètes.

On obtient la même *forme* de graphique, que l'on étudie les effectifs ou les fréquences des valeurs de la série.

Exemple à partir du même exercice sur le nb de calculatrices :

X _i	0	1	2
n _i	4	25	5





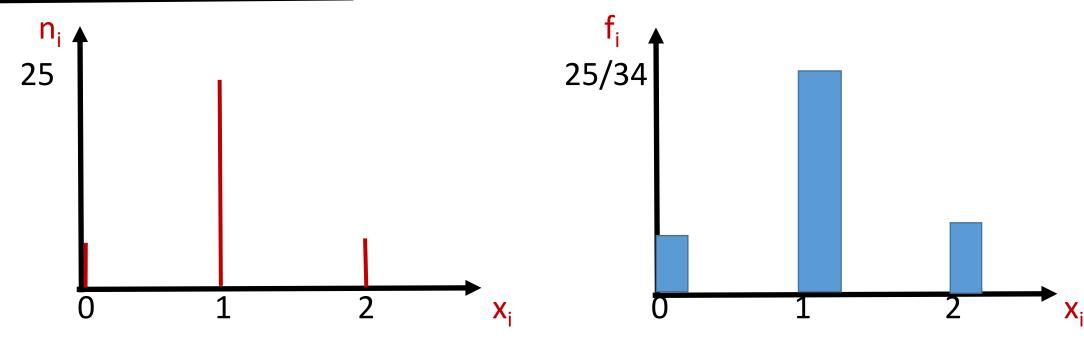
1) Diagrammes à bâtons ou à barres : uniquement pour les séries discrètes.

On obtient la même forme de graphique, que l'on étudie les effectifs ou les fréquences des valeurs de la série.

Exemple à partir du même exercice sur le nb de calculatrices :

X _i	0	1	2
n _i	4	25	5

Les fréquences sont proportionnelles aux effectifs



2) Diagrammes à secteurs : appelés camemberts

Les angles a_i des secteurs angulaires sont proportionnels aux effectifs (donc aussi aux fréquences) des valeurs x_i .

Exemple à partir du même exercice sur le nb de calculatrices :

X _i	0	1	2
n _i	4	25	5

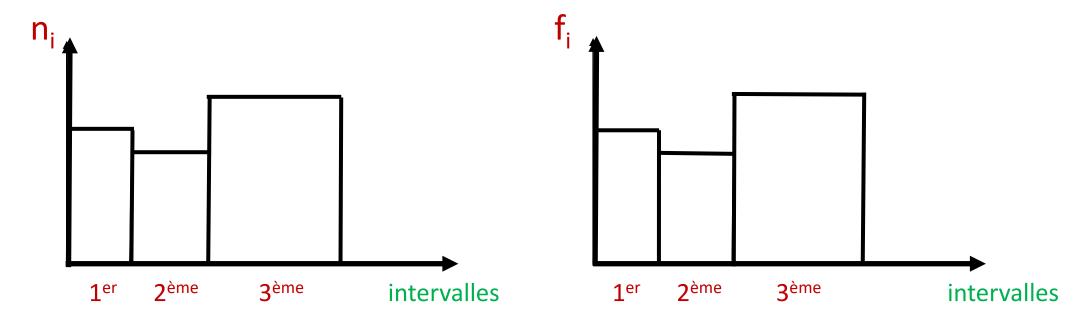
2) Diagrammes à secteurs : appelés camemberts

Les angles a_i des secteurs angulaires sont proportionnels aux effectifs (donc aussi aux fréquences) des valeurs x_i .

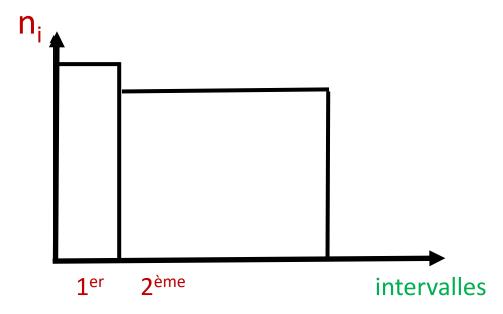
Exemple à partir du même exercice sur le n^b de calculatrices :

X _i	0	1	2				
n _i	4	25	5			$\mathbf{X}_{\mathbf{i}}$	2 0
4			25		5		
	360 ≈	42°		-360 ≈ 265°	—— 360 ≈ <mark>53</mark>	°	1
34			34	4	34		

On obtient la même *forme* de graphique, que l'on étudie les effectifs ou les fréquences des intervalles (proportionnalité de coeff. pr. N)

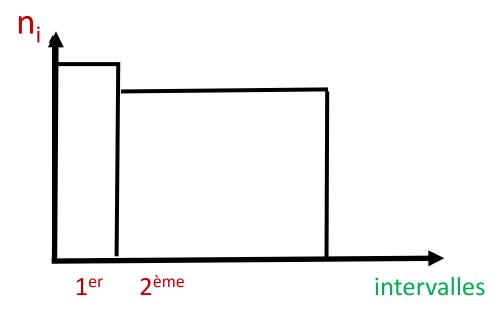


On obtient la même *forme* de graphique, que l'on étudie les effectifs ou les fréquences des intervalles (proportionnalité de coeff. pr. N)



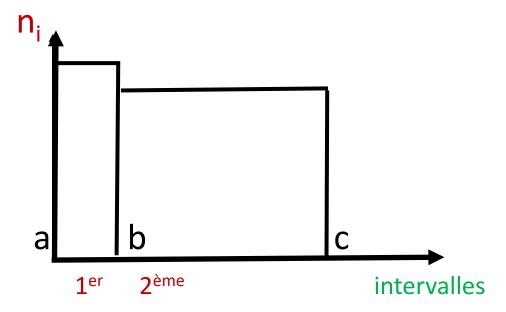
Le 1^{er} intervalle possède ...

On obtient la même *forme* de graphique, que l'on étudie les effectifs ou les fréquences des intervalles (proportionnalité de coeff. pr. N)



Le 1^{er} intervalle possède plus de valeurs que le 2^{ème} et ces valeurs ...

On obtient la même *forme* de graphique, que l'on étudie les effectifs ou les fréquences des intervalles (proportionnalité de coeff. pr. N)



Le 1^{er} intervalle possède plus de valeurs que le 2^{ème} et ces valeurs sont entre deux nombres a et b plus proches.

Exemple : Déterminez l'histogramme des fréquences de la série continue constituée des intervalles suivants :

```
[0;6[;[6;10[;[10;13[;[13;20]]d'effectifs respectifs 5;10;8;11.
```


Exemple: Déterminez l'histogrammes des fréquences de la série continue constituée des intervalles suivants: [0;6[;6];6]; [10;13];

$$N = 5 + 10 + 8 + 11 = 34$$
 $f_i = n_i / N$

