I Sens de variation d'une fonction sur un intervalle.

1°) <u>Définition</u>: Soit une fonction f  $définie \ sur \ D_f \ contenant \ J = [\ c\ ;\ d\ ].$ 

La fonction f est strictement croissante sur un intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

I Sens de variation d'une fonction sur un intervalle.

1°) <u>Définition</u>:

Soit une fonction f

définie sur  $D_f$  contenant J = [c; d].

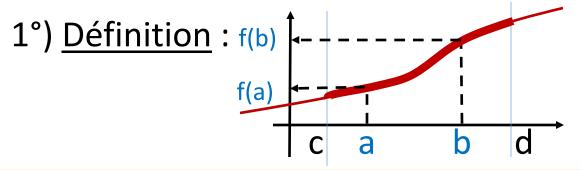
La fonction f est strictement croissante sur un intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

I Sens de variation d'une fonction sur un intervalle.

1°) <u>Définition</u>:

Soit une fonction f

définie sur  $D_f$  contenant J = [c; d].


La fonction f est strictement croissante sur un intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

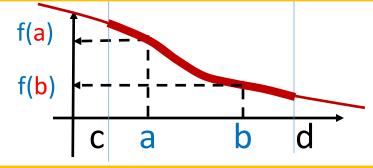
#### I Sens de variation d'une fonction sur un intervalle.

1°)  $\underbrace{D\acute{e}finition}_{f(a)}: f(b)$  Soit une fonction f définie sur  $D_f$  contenant J=[c;d].

La fonction f est strictement croissante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

#### I Sens de variation d'une fonction sur un intervalle.

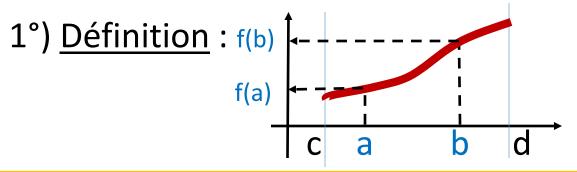



Soit une fonction f

définie sur  $D_f$  contenant J = [c; d].

La fonction f est strictement croissante sur l'intervalle J

si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

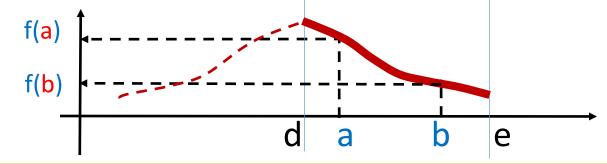

2ème cas:



La fonction f est strictement décroissante sur l'intervalle J

si et seulement si pour tous les a et b de J, si a < b alors f(a) > f(b)

#### I Sens de variation d'une fonction sur un intervalle.




Soit une fonction f

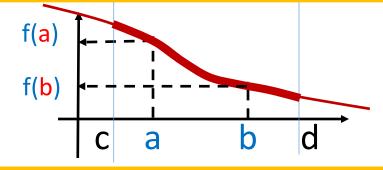
définie sur  $D_f$  contenant J = [c; e].

La fonction f est strictement croissante sur l'intervalle J = [ c ; d ] si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

2<sup>ème</sup> cas:



La fonction f est strictement décroissante sur l'intervalle K = [ d ; e ] si et seulement si pour tous les a et b de K, si a < b alors f(a) > f(b)


I Sens de variation d'une fonction sur un intervalle.

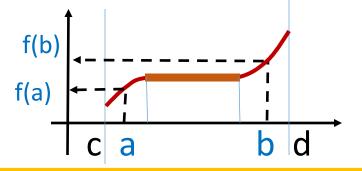
Soit une fonction f

définie sur  $D_f$  contenant J = [c; d].

La fonction f est strictement croissante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) < f(b)

2ème cas:

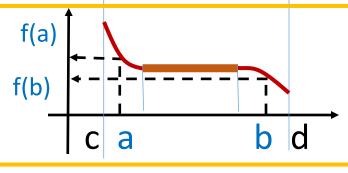



Idem ...

alors f(a) > f(b)

## Fonctions croissantes ou décroissantes

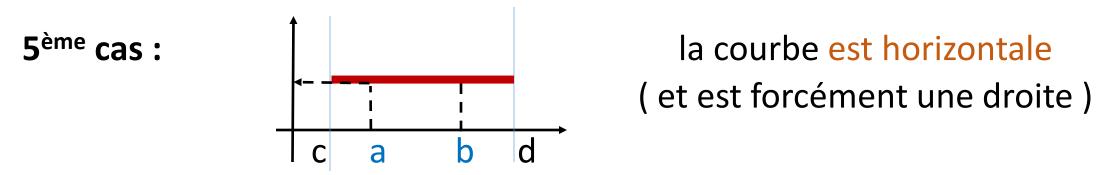
non strictement


3ème cas:



la courbe grimpe mais comporte un palier.

La fonction f est croissante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors  $f(a) \le f(b)$ 


4ème cas:

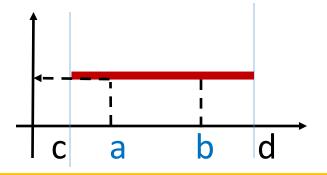


la courbe descend

mais comporte un palier.

La fonction f est décroissante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors  $f(a) \ge f(b)$ 

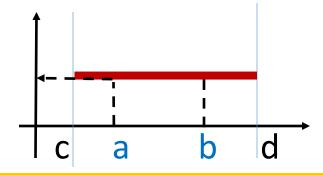



La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors ...

5ème cas:

la courbe est horizontale ( et est forcément une droite )

La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a ≠ b alors f(a) = f(b)

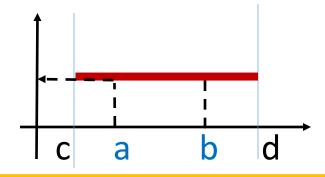

5ème cas:



la courbe est horizontale ( et est forcément une droite )

La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)

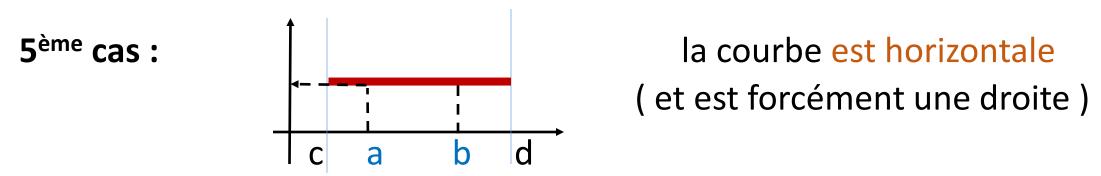
5<sup>ème</sup> cas:




la courbe est horizontale ( et est forcément une droite )

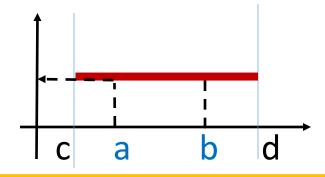
La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)

Ce cas de fonctions constantes est ...


5<sup>ème</sup> cas:



la courbe est horizontale ( et est forcément une droite )


La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)

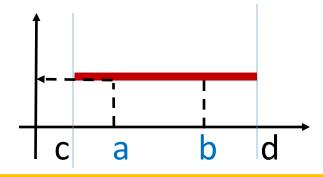
Ce cas de fonctions constantes est très rare,



La fonction f est constante sur l'intervalle J
si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)
Ce cas de fonctions constantes est très rare,
comme les fonctions ...

5<sup>ème</sup> cas:




la courbe est horizontale ( et est forcément une droite )

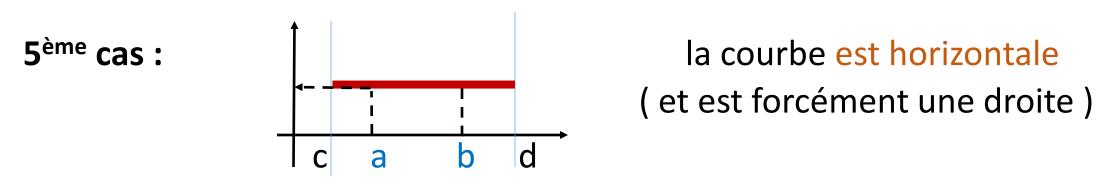
La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)

Ce cas de fonctions constantes est très rare,

comme les fonctions croissantes ou décroissantes non strictement.

5<sup>ème</sup> cas:

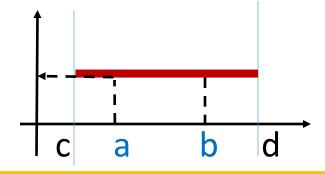



la courbe est horizontale ( et est forcément une droite )

La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)

Ce cas de fonctions constantes est **très rare**,

comme les fonctions croissantes ou décroissantes non strictement.


**Résumé**: La fonction croissante conserve l'ordre : a < b alors f(a) ...



La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b) Ce cas de fonctions constantes est très rare, comme les fonctions croissantes ou décroissantes non strictement.

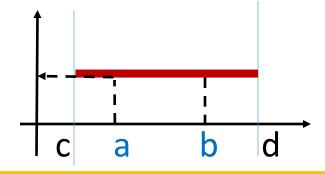
**Résumé :** La fonction croissante conserve l'ordre : a < b alors f(a) < f(b) ( l'ordre des antécédents a été conservé sur les images respectives )

5<sup>ème</sup> cas:



la courbe est horizontale ( et est forcément une droite )

La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)


Ce cas de fonctions constantes est très rare,

comme les fonctions croissantes ou décroissantes non strictement.

**Résumé**: La fonction croissante conserve l'ordre : a < b alors f(a) < f(b)

La fonction décroissante inverse l'ordre : a < b alors f(a) ...

5<sup>ème</sup> cas:



la courbe est horizontale ( et est forcément une droite )

La fonction f est constante sur l'intervalle J si et seulement si pour tous les a et b de J, si a < b alors f(a) = f(b)

Ce cas de fonctions constantes est très rare,

comme les fonctions croissantes ou décroissantes non strictement.

**Résumé :** La fonction croissante conserve l'ordre : a < b alors f(a) < f(b)

La fonction décroissante inverse l'ordre : a < b alors f(a) > f(b)

fonctions croissantes et décroissantes strictement! (cas courants)

# 2°) Fonction monotone:

La fonction f est monotone sur l'intervalle J signifie qu'elle n'a ...

## 2°) Fonction monotone:

La fonction f est monotone sur l'intervalle J signifie que elle n'a qu'un seul sens de variation sur J.

# 2°) Fonction monotone:

La fonction f est monotone sur l'intervalle J signifie que elle n'a qu'un seul sens de variation sur J.

La fonction f est **strictement** monotone sur l'intervalle J signifie qu'elle n'a qu'un seul sens **strict** de variation sur J.

Donc une fonction croissante ( non strictement ) n'est pas monotone ( elle est constante sur une partie de l'intervalle, et strictement croissante sur une autre partie ).